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Logistics
Most important slide of today’s class

‣ First homework is out!
• exercise sheet is in the webbook
• there will be a consultation on Tuesday, Oct 31st, 14016, on Zoom
• the solutions have to be submitted on Moodle until Nov 8th, 12:30

‣ Final assignments & grading information:
• 3 CP: 3 x homework + poster presentation (60:40)

- poster papers will be on Moodle shortly (announcement will be sent)
- guidelines and materials will be on Moodle 
- submission until end of February

• 6 CP: 3 x homework + poster presentation + group project (35:25:40)
• 9CP: 3 x homework + poster presentation + group project + in-class presentation 

(25:15:40:20)
- guidelines and presentation papers will be on Moodle shortly (announcement will be 
sent)

- please sign up for a presentation until Nov 8th, 12:30!



Large Language Models



left-to-right / causal model

‣ let  be a (finite) vocabulary, a set of words
• we say “words” but these can be characters, sub-words, units …

‣ let  be a finite sequence of words
‣ a causal language model is defined as a function that maps an 

initial sequence of words to a probability distribution over words:  

• we write  for the next-word probability

• the surprisal of  after sequence  is 

𝒱

w1:n = ⟨w1, …, wn⟩

LM : w1:n ↦ Δ(𝒱)
PLM(wn+1 ∣ w1:n)

wn+1 w1:n −log (PLM(wn+1 ∣ w1:n))

Language model
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Language models
Architecture

Hi , my name is

Hi, my name is Polina.

tokens

training input

, my name is Polina

−log y, −log ymy −log yname −log yis  −log yPolinaLoss
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Language models
Architecture

Hi , my name is

Hi, my name is Polina.

tokens

training input

, my name is Polina

−log y, −log ymy −log yname −log yis  −log yPolinaLoss

low 
H(V) = − ∑

yi∈V

P(yi) log P(yi)

high 
H(V) = − ∑

yi∈V

P(yi) log P(yi)



Transformer blocks

‣ layer normalization:

‣ residual connection
• facilitates learning

‣ self-attention layer
• key novel innovation

LayerNorm(x) = γ z-score(x) + β

z-score(x) =
x − mean(x)

SD(x)

Vaswani et al. (2017)



Self-attention layer

‣ output

‣ weight score

‣ three vectors for each input vector 
1. query: which info to extract from context

2. key: which info to provide for later

3. value: what output to choose

yi = ∑
j≤i

αijvj

αi,j =
exp(qi ⋅ kj)

∑j′￼≤i exp(qi ⋅ kj′￼)

xi

qi = WQxi

ki = WKxi

vi = WVxi

Vaswani et al. (2017)



Masking in self-attention layers
Causal language modeling

Vaswani et al. (2017)

q1 k1

Self-attention layer

v1 q2 k2 v2 q3 k3 v3 qn kn vn

Slide inspired by slides by Elia Bruni Uni Osnabrück Advanced NLP SS2022

y1 y2 y3 yn

q1 k1

Self-attention layer

v1 q2 k2 v2 q3 k3 v3 qn kn vn
SOS …

SOS

…

x1
x2
x3

xn

x1 x2 x3 xn
−∞

−∞

−∞

−∞

−∞ −∞

−∞

−∞−∞

−∞−∞−∞

−∞−∞−∞−∞

−∞ −∞ −∞ −∞ −∞

Mask over qi ⋅ kj



Multihead attention layer



Positional encoding



Pretraining language 
models
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Maximizing next-token probability
Training

Hi , my name is

Hi, my name is Polina.

tokens

training input

, my name is Polina

−log y, −log ymy −log yname −log yis  −log yPolinaLoss

Cross-entropy loss: 

Lθ = −
|V|

∑
i

Q(yi)log P(yi)

Lθ = − log P(yi)

Lθ =
1
n

n

∑
i

− log P(yi)

Lθ =
1
b

b

∑
j

1
nj

nj

∑
i

− log P(yji)
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Maximizing next-token probability
Optimization

‣
Loss: 

• b batch size, n length of sequence j, y_ji token i in 
sequence j

‣ Optimization: tweak  so as to minimize loss
• Gradient descent: 

Lθ =
1
b

b

∑
j

1
nj

nj

∑
i

− log P(yji)

θ
θnew = θold − γ∇Lθ

Li et al. (2018)

https://arxiv.org/pdf/1712.09913.pdf


Common training regimes

‣ teacher forcing
• LM is fed true word sequence
• training signal is next-word assigned to true word

‣ autoregressive training (aka free-running mode)
• LM autoregressively generates a sequence
• training signal is next-word probability assigned to true word

‣ curriculum learning (aka scheduled sampling)
• combine teacher-forced and autoregressive training
• start with mostly teacher forcing, then increase amount of autoregressive training

‣ professor forcing
• combines teacher forcing with adversarial training
• generative adversarial network GAN is trained to discriminate (autoregressive) predictions from actual data
• LM is trained to minimized this discriminability

‣ decoding-based
• use prediction function (decoding scheme) to optimize based on actual output
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Bells & Whistles of training LMs

‣ batch size
‣ optimizers
‣ learning rate decay
‣ different non-linearities
‣ architecture
‣ training data composition
‣ stopping criteria 
‣ …
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Supervised fine-tuning
Domain-specific training

Bommasani et al. (2021), Chung et al. (2022)

‣ supervised fine-tuning ::: continued training on specific dataset
‣ pretrained models can be fine-tuned on a specific task

• sentiment classification
• question-answering
• token classification
• …

‣ pretrained models can be fine-tuned on specific datasets
• instruction following datasets



Inference / prediction



Autoregressive generation
left-to-right / causal model

, my

Hi ,

Polina

my

name

name

is

is

Softmax

Sampled word



Common decoding schemes

‣ pure sampling
• next word is sampled from next-word probability distribution: 

‣ greedy decoding
• next word is word with highest probability: 

‣ softmax sampling
• next word is sampled from softmax of next-word probability distribution: 

‣ top-k sampling
• next word is sampled from next-word prob. distribution after restricting to the  most likely words

‣ top-p sampling (=nucleus sampling)
• next word is sampled from next-word prob. distribution after restricting to the smallest set of the most 

likely words which together comprise at least next-word probability 

‣ beam search
• greedily construct sequences of best k words

𝗐𝗂+𝟣 ∼ 𝖯( ⋅ ∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 = arg max𝗐′￼
𝖯(𝗐′￼ ∣ 𝗐𝟣:𝗂)

𝗐𝗂+𝟣 ∼ 𝖲𝖬α (𝖯( ⋅ ∣ 𝗐𝟣:𝗂))

𝗄

𝗉

based on next-word probability 𝖯(𝗐𝗂+𝟣 ∣ 𝗐𝟣:𝗂)
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In-context ‘learning’ & prompting
Learning without gradient descent

Brown et al. (2022), Slides mentioning recent prompting techniques

‣ very large models exhibit ‘in-context learning’:

‣ advanced prompting techniques allow to ‘condition’ the LLM to do a certain task more 
effectively
• has been shown to lead to advanced ‘reasoning’ capabilities

https://cogsciprag.github.io/LLM-implications/materials/session3
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Summary Second heading
Transformers,Training & Inference second subheading

‣
‣ transformers use self-attention to offer 

and retrieve relevant information
• stacked transformer blocks and multi-head 

attention increase capacity

‣ LMs are trained to predict the next word 
using cross-entropy loss (via teacher-
forcing)

‣ decoding schemes are used for inference 
given a trained LM
• different stochastic sampling regimes

‣ SOTA models exhibit ‘in-context learning’

‣ advanced prompting techniques might 
improve LLMs’ generalization 
performance

LM : X ↦ Δ(S)
‣ Here is a bullet-point list

‣ first level
• second level

‣ first level
• second level

- third level
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What is a good language model?
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Making LLMs useful

OpenAI (2023)

Removing the ugly



Making LLMs useful
Enhancing the good

26 OpenAI (2023), Microsoft (2023)



Reinforcement learning
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Flavors of machine learning

‣ Supervised learning
• also self-supervised learning
• aka behavioural cloning

‣ learn to output Y, given X 
from labeled data
• ’do as I show you’

‣ learning from 
demonstration

Christian (2020), Bishop (2009)

‣ Unsupervised learning
• e.g., clustering

‣ discover patterns in 
unlabeled data
• ‘given my inductive bias, 

what is the likely structure of 
the data?’

‣ Reinforcement learning
• trial-and-error learning

‣ learning from interaction / 
experience
• ‘how do I optimally behave in 

order to maximize reward?’
• or, ‘how do i optimally 

achieve my goal?’
- most natural way of learning?
- tightly connected to the way 
organisms behave (“pleasure 
maximizers”)



Reinforcement Learning: Overview
Introduction
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‣ Reinforcement Learning: Computational formalisation of goal-directed learning and 
decision making

‣ Goal: Maximize rewards  
(by learning optimal behavior)

‣ Basic building blocks:
• Agent
• States
• Actions
• Transition function 
• Reward
• Policy

P

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Associative RL Non-associative RL

http://research.microsoft.com/en-us/projects/bandits/


Reinforcement Learning: Overview
Introduction

30

‣ Reinforcement Learning: Computational formalisation of goal-directed learning and 
decision making

‣ Goal: Maximize rewards 
(by learning optimal behavior)

‣ Basic building blocks:
• Agent
• States: 
• Actions: 
• Transition function 
• Reward: 
• Policy: 

𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)

P(s′￼ ∣ s, a)
𝖱𝗍+𝟣 ∈ R

π(St) = P(At |St)

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Associative RL Non-associative RL

http://research.microsoft.com/en-us/projects/bandits/
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Markov Decision Processes
Optimization Problem

Sutton & Barto (2018)

‣ Goal: Maximize accumulated rewards (=returns): 

‣ Basic building blocks:
• Agent
• States: 
• Actions: 
• Reward: 
• Policy:  

Gt =
∞

∑
k=0

γkRt+k+1

𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R

π(St) = P(At |St)
‣ We can identify optimal way to behave if we know what good particular states and/or actions are: 

State-value function:  for all 

Action-value function:  for all 

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s] s

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s, At = a] s, a
think: “How good is it to be in state ?”s

think: “How good is it to take action  in state ?”a s

‣ Can be estimated from experience!

‣ Optimal policy :  for all  and  π * π ≥ π′￼ ⇔ v *π* (s) ≥ vπ′￼
(s) s q *π* (s, a) = max

π′￼

qπ′￼
(s, a)
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RL Algorithms
Approximating Optimal Policy

[3]
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Summary Second heading
Reinforcement learning second subheading

‣ RL is the computational formalization of 
(goal-directed) learning from experience
• reward hypothesis: goals can be thought of as 

maximization of expected cumulative reward 

‣ formalized via states, actions, rewards, 
policy
• computational problem: finding the optimal 

policy

‣ state-value and action-value functions 
can be estimated from experience
• intuitively, optimal policy chooses actions which 

have highest values

‣ Here is a bullet-point list

‣ first level
• second level

‣ first level
• second level

- third level


