
Polina Tsvilodub

Reinforcement Learning for Language
Model Training
Reinforcement Learning

2

LMs: Recap Second heading
Transformers,Training & Inference second subheading

‣
‣ transformers use self-attention to offer

and retrieve relevant information
• stacked transformer blocks and multi-head

attention increase capacity

‣ LMs are trained to predict the next word
using cross-entropy loss (via teacher-
forcing)

‣ decoding schemes are used for inference
given a trained LM
• different stochastic sampling regimes

‣ SOTA models exhibit ‘in-context learning’

‣ advanced prompting techniques might
improve LLMs’ generalization
performance

LM : X ↦ Δ(S)
‣ Here is a bullet-point list

‣ first level
• second level

‣ first level
• second level

- third level

3

Making LLMs useful
Adaptation

source

‣ training a task-specific head on top of a model
• e.g., span prediction layer on top of BERT with frozen BERT
• on a dataset of ground truth input-output pairs for a particular task

‣ fine-tuning the model
• further training part or entire model for a shorter time
• on a dataset of ground truth input-output pairs for a particular task

‣ practical problem
• training with standard supervision is impractical (data collection)
• and inefficient (restricting “ground truth” to finite set of answers for open-ended tasks)

‣ RL is the solution: learn to achieve goal based on feedback from environment rather than
direct demonstration of correct behaviour

https://stanford-cs324.github.io/winter2022/lectures/adaptation/

Reinforcement learning

5

Flavors of machine learning

‣ Supervised learning
• also self-supervised learning
• aka behavioural cloning

‣ learn to output Y, given X,
from labeled data
• ‘do as I show you’

‣ learning from
demonstration

Christian (2020), Bishop (2009)

‣ Unsupervised learning
• e.g., clustering

‣ discover patterns in
unlabeled data
• ‘given my inductive bias,

what is the likely structure of
the data?’

‣ Reinforcement learning
• trial-and-error learning

‣ learning from interaction /
experience
• ‘how do I optimally behave in

order to maximize reward?’
• or, ‘how do i optimally

achieve my goal?’
- most natural way of learning?
- tightly connected to the way
organisms behave (“pleasure
maximizers”)

Reinforcement Learning: Overview
Introduction

6

‣ Reinforcement Learning: Computational formalisation of goal-directed learning and
decision making under uncertainty

‣ Goal: Maximize rewards  
(by learning optimal behavior)

‣ Basic building blocks:
• Agent
• States
• Actions
• Transition function
• Reward
• Policy

P

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Associative RL

http://research.microsoft.com/en-us/projects/bandits/

Reinforcement Learning: Overview
Introduction

7

‣ Reinforcement Learning: Computational formalisation of goal-directed learning and
decision making under uncertainty

‣ Goal: Maximize rewards 
(by learning optimal behavior)

‣ Basic building blocks:
• Agent
• States:
• Actions:
• Transition function:
• Reward:
• Policy:

𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)

P(s′￼ ∣ s, a)
𝖱𝗍+𝟣 ∈ R

π(St) = P(At |St)

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Associative RL

http://research.microsoft.com/en-us/projects/bandits/

Finite MDPs:
1.
2.
3.

4.

5. Horizon H, discount factor
Expected rewards for state and action :

Markov property: include all information about past agent-environment
interactions that are relevant for

(S, A, T, R)
𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

0 ≤ γ ≤ 1
s a r(s, a) = 𝔼(Rt |St−1 = s, At−1 = a) = ∑

r∈R

r∑
s′￼∈S

P(s′￼, r |s, a)

St−1, At−1
St, Rt

8

Markov Decision Processes

Sutton & Barto (2018, p. 48, Fig 3.1)

Formal definition

Finite MDPs:
1.
2.
3.

4.

(S, A, T, R)
𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

9

Markov Decision Processes

Sutton & Barto (2018, p. 48, Fig 3.1)

Formal definition

Goal: maximize returns until goal achieved  

Formally: maximize expected discounted rewards over
episode  

Gt = Rt+1 + Rt2 + … + RT

Gt = Rt+1 + γRt2 + γ2Rt+3 + … + γT−t−1RT =
T

∑
k=t+1

γk−t−1Rk

Finite MDPs:
1.
2.
3.

4.

(S, A, T, R)
𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

10

Markov Decision Processes

Sutton & Barto (2018, p. 48, Fig 3.1)

Formal definition

Goal: maximize discounted returns
 

=

Gt = Rt+1 + γRt2 + γ2Rt+3 + … + γT−t−1RT =
T

∑
k=t+1

γk−t−1Rk

Rt+1 + γGt+1

‣ We can identify optimal way to behave if we know what good particular states
and/or actions are:
Optimal state-value function:  

  

 for all

V*π (s) = max
π

𝔼[Gt |St = s] = max
π

𝔼[Rt+1 + γGt+1 |St = s]

= max
a ∑

s′￼,r

P(s′￼, r ∣ s, a)[r + γGt+1 ∣ St = s] s

‣ Optimization problem: (computationally) find optimal policy π * (St) = P(At |St)

Finite MDPs:
1.
2.
3.

4.

(S, A, T, R)
𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

11

Markov Decision Processes

source

Formal definition

Optimal state-value function:
V*π (s) = max

π
𝔼[Gt |St = s] = max

π
𝔼[

T

∑
k=t+1

γk−t−1Rk |St = s]

deterministic optimal policy
γ = 1

deterministic optimal policy
γ = 0.9

V*(4,3) = 1
V*(3,3) = 1
V*(2,3) = 1
V*(1,1) = 1
V*(4,2) = − 1

V*(4,3) = 1
V*(3,3) = 0.9
V*(2,3) = 0.81
V*(1,1) = 0.95 = 0.59
V*(4,2) = − 1

https://youtu.be/2GwBez0D20A?si=dIPt3IhHdJCebQPO

Finite MDPs:
1.
2.
3.

4.

(S, A, T, R)
𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

12

Markov Decision Processes

Sutton & Barto (2018, p. 48, Fig 3.1)

Formal definition

‣ We can identify optimal way to behave if we know what good particular states
and/or actions are:

Optimal action-value function:  
 

 for all
Q*π (s, a) = max

π
𝔼[Gt |St = s, At = a] = max

π
𝔼[Rt+1 + γGt+1 |St = s, At = a]

= ∑
s′￼,r

P(s′￼, r ∣ s, a)[r + γ max
a′￼

Q*(s′￼, a′￼) ∣ St = s, At = a] s, a

Goal: maximize discounted returns
 

=

Gt = Rt+1 + γRt2 + γ2Rt+3 + … + γT−t−1RT =
T

∑
k=t+1

γk−t−1Rk

Rt+1 + γGt+1

Finite MDPs:
1.
2.
3.

4.

(S, A, T, R)
𝖲𝗍 ∈ S 𝖿𝗈𝗋 𝗍 = 𝟢, 𝟣, 𝟤, 𝟥, . . .
𝖠𝗍 ∈ A(𝗌)
𝖱𝗍+𝟣 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

13

Markov Decision Processes

Sutton & Barto (2018, p. 48, Fig 3.1)

Formal definition

‣ Optimization problem: (computationally) find optimal policy
‣ Optimal policy : for all

‣ Can be estimated from experience!
• e.g., value iteration methods for episode tasks

π * (St) = P(At |St)
π * π ≥ π′￼ ⇔ v *π* (s) ≥ vπ′￼

(s) s

Goal: maximize discounted returns
 

=

Gt = Rt+1 + γRt2 + γ2Rt+3 + … + γT−t−1RT =
T

∑
k=t+1

γk−t−1Rk

Rt+1 + γGt+1

Finite MDPs:
1. where

 is iteration over repeated choice now

2.
3.
4.

(S, A, T, R)
𝖲𝗍 ∈ S S = {s}

t
A(s) = {a0, a1, . . . }
𝖱𝗍 ∈ R
T(s′￼|s, a) = ∑

r′￼∈R

P(s′￼, r′￼|s, a)

14

Multi-Armed Bandits
Finding the best restaurant

s

𝖺𝟢 𝖺𝟣𝖠𝗍 = 𝖺𝗂 ‣ Optimization problem: (computationally) find optimal policy

‣ Can be estimated from experience over repeated
decision-making!
• e.g., with action-value methods like the sample-average method

‣ central problem: exploration vs. exploitation

π * (St) = P(At |St)

Goal: maximize reward over repeated action selection
Optimal action-value function:
Q*π (s, a) = max

π
𝔼[Gt |St = s, At = a]

Q*π (a) = max
π

𝔼[Rt |At = a]

image source

http://research.microsoft.com/en-us/projects/bandits/

15

RL Algorithms
Approximating Optimal Policy

[3]

16

RL Algorithms
Approximating Optimal Policy

[3]

17

Policy-Gradient Methods
Introduction

source

‣ so far: deriving optimal policy from estimated value function
• coming up with value functions might be difficult
• state-value function doesn’t prescribe actions
• action-value functions require argmax

‣ idea: optimize policy directly, such that expected reward is maximized
• think: optimize model with respect to objective function

‣ goal: find optimal
•

‣ recall LM optimization: tweak so as to minimize loss
• Gradient descent:
• Now: gradient ascent:

θ
max

θ
𝔼πθ

[Gt]

θ
θnew = θold − α∇Lθ

θnew = θold + α∇Lθ

πθ(a ∣ s)

https://youtu.be/AKbX1Zvo7r8?si=xXTWxjIngR-Gb5If

18

Policy-Gradient Methods
Policy-gradient theorem

‣ goal: find optimal
• Now: gradient ascent:

‣ we write for a sequence of states, actions, rewards and for (discounted) return

•

‣ sample-based policy gradient estimation

θ
θnew = θold + α∇Lθ

τ R(τ)
L(θ) = ∑

τ

P(τ, θ) R(τ)

∇L(θ) = ∇∑
τ

P(τ, θ) R(τ) = ∑
τ

∇θP(τ, θ) R(τ)

= ∑
τ

P(τ, θ)
P(τ, θ)

∇θP(τ, θ)R(τ)

= ∑
τ

P(τ, θ)
∇θP(τ, θ)

P(τ, θ)
R(τ) = ∑

τ

P(τ, θ)∇θlog P(τ, θ)R(τ)

≈
1
m

m

∑
i=1

∇θlog P(τi, θ)R(τi)

 log(f(x)) = f(x)/f(x)∇ ∇

19

Policy-Gradient Methods
Language models as policies

Sutton & Barto (2018)

Policy gradient estimation:

‣ policy : language model

‣ trajectories : generations from language model

‣ : log probability of a generation under the language model

‣ : reward for generation

∇L(θ) = ∑
τ

P(τ, θ)∇θlog P(τ, θ)R(τ) ≈
1
m

m

∑
i=1

∇θlog P(τi, θ)R(τi)

P
τ

log P(τi, θ) τi

R(τi) τi

20

Summary Second heading
Reinforcement learning second subheading

‣ the central framework for formalizing RL
problems are Markov Decision Processes
(MDPs)

‣ task of RL is to solve MDP such that the
expected return is maximized
• and to find the optimal policy

‣ classical solution methods for MDPs
include estimation of optimal state- and
action-value functions

‣ policy gradient methods directly optimize
the policy such that the expected return is
maximized
• can be applied to LMs!

‣ Here is a bullet-point list

‣ first level
• second level

‣ first level
• second level

- third level

21

Announcements

Solutions to exercises will be on Moodle on November 15th!

Next class (November 15th) online only!

