Reinforcement Learning for Language
Model Training

Polina Tsvilodub

Reinforcement Learning

LMs: Recap

» transformers use self-attention to offer

and retrieve relevant information

- stacked transformer blocks and multi-head
attention increase capacity

» LMs are trained to predict the next word
using cross-entropy loss (via teacher-
forcing)

» decoding schemes are used for inference
given a trained LM
- different stochastic sampling regimes

» SOTA models exhibit ‘in-context learning’

» advanced prompting techniques might
improve LLMs’ generalization
performance

Making LLMs useful

Adaptation

» training a task-specific head on top of a model
- e.g., span prediction layer on top of BERT with frozen BERT
- on a dataset of ground truth input-output pairs for a particular task
» fine-tuning the model
- further training part or entire model for a shorter time
» 0on a dataset of ground truth input-output pairs for a particular task
» practical problem
- training with standard supervision is impractical (data collection)
- and inefficient (restricting “ground truth” to finite set of answers for open-ended tasks)

> RL is the solution: learn to achieve goal based on feedback from environment rather than
direct demonstration of correct behaviour

source

https://stanford-cs324.github.io/winter2022/lectures/adaptation/

Reinforcement learning

Flavors of machine learning

. > Supervised learning » Reinforcement learning
- also self-supervised learning - trial-and-error learning
. + aka behavioural cloning » learning from interaction /
» learn to output Y, given X, experience
from labeled data - ‘how do | optimally behave in
- ‘do as | show you’ order to maximize reward?’

- or, ‘how do i optimally
achieve my goal?’

- most natural way of learning?

- tightly connected to the way
organisms behave (“pleasure
maximizers”)

» learning from
demonstration

Christian (2020), Bishop (2009)

Reinforcement Learning: Overview
Introduction

» Reinforcement Learning: Computational formalisation of goal-directed learning and

decision making under uncertainty =
o 1
> Goal: MaX|mlze rewardS LEFT ‘l‘g_a_,xl‘Rl(GH
. . . 0 — l"%"l_*b
(by learning optimal behavior) 1
» Basic building blocks: ? 2
. Agen’[End
’ States Associative RL
- Actions
. Transition function P
- Reward
| state| |reward action
- Policy S R, A
i

Rr+l
S.. | Environment

Sutton & Barto (2018, p. 48, Fig 3.1), image source

http://research.microsoft.com/en-us/projects/bandits/

Reinforcement Learning: Overview
Introduction

» Reinforcement Learning: Computational formalisation of goal-directed learning and

decision making under uncertainty T
. l
> Goal: MaX|mlze rewardS LEFT ‘l‘g_a_,xl‘Rl(GH
. . . 0 — |"Oo"|_"b
(by learning optimal behavior)]
» Basic building blocks: 3 3
° Agen’[End

- States: S, e Sfort=0,1,2,3,...
- Actions: A, € A(s)

. Transition function: P(s’ | s, a)

- Reward: R, ; ER state| |reward action
- Policy: #(S,) = P(A,|S,) S R, 4,

Rr+l
S.. | Environment

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Associative RL

http://research.microsoft.com/en-us/projects/bandits/

Markov Decision Processes
Formal definition

Finite MDPs: (5, A, T, R)
1. S,eSfort=0,1,2,3,...

reward

2. A, € A(s) U N L A
3. Ryt ER ‘ g' Environment I
4. T(s'|s,a) = Z P(s',r'|s, a) ;
r'eR
D.
Expected rewards for state s and action a: r(s,a) = E(R,|S,_ = 5,A,_; = a) = Z rz P(s',r|s,a)

reR s'es

Markov property: S,_,A,_; include all information about past agent-environment
interactions that are relevant for §,, R,

Sutton & Barto (2018, p. 48, Fig 3.1)

Markov Decision Processes
Formal definition

Finite MDPs: (5, A, T, R) Goal: maximize returns until goal achieved
1.5, €Sfort=0,1,2,3,... G, =R+ R, + ...+ Ry
2. A, € A(s) Formally: maximize expected discounted rewards over
3. R1 ER episode ;
4 T$'ls,a) =) P’ L5, @) G, =R+ 7R, + 1 Rys+ ... +7 "Ry = Z r IR,
r'eR k=t+1

Sutton & Barto (2018, p. 48, Fig 3.1)

10

Markov Decision Processes
Formal definition

Finite MDPs: (5, A, T, R) Goal: maximize discounted returns
T
1. St eS for t = O, 1,2, 3, c e Gt _ Rt-|-1 +}/Rt2+ 72R;+3 + .+ }/T_t_lRT — Z yk—t—le
2. At e A(s) k=t+1
3. Rt+1 € R =R +7G64
4. T(s'|s,a) = Z P(s',r'| s, a)

r'ER
» We can identify optimal way to behave if we know what good particular states
and/or actions are:

Optimal state-value function:
Vi(s) = max E[G,|S, =s] = max E[R, . +7G, (]S, = 5]

—maXZP(s r| s, a)[r+yGt+1|S = s] for all s

s’ N

» Optimization problem: (computationally) find optimal policy 7 * (S,) = P(A,|S)

Sutton & Barto (2018, p. 48, Fig 3.1)

Markov Decision Processes
Formal definition

Finite MDPs: (5,A, T, R) Optimal state-value function:
T
1. S,eSfort=0,1,2,3,... Vi(s) = max E[G,| S, = s] = max E[Z =R |8, = s)
2. A, € A(s) " " k=t+1
3. R ER
4. T(s'|s,a) = Z P(s',r'| s, a)
ER deterministic optimal policy deterministic optimal policy
y =1 y =0.9
V¥4,3) =1 V*4,3) =1
V#(3,3) = 1 V*#(3,3) = 0.9
V*(2,3) =1 V#(2,3) = 0.81
VE(1,1) = 1 V¥(1,1) = 0.9° = 0.59
VE(4,2) = — 1 VE4,2) = — 1

source

https://youtu.be/2GwBez0D20A?si=dIPt3IhHdJCebQPO

Markov Decision Processes
Formal definition

Finite MDPs: (5,A, T, R) Goal: maximize discounted returns
T
. fort=0,1,2,3,... - i
1 StES O t O, ’ 939 GI=RZ‘+1+}/RZ‘2+}/2RH_3+---+}/Tt 1RT= Z ykl‘ le
2. At e A(s) k=t+1
3. Ryt ER =R + 76y
4. T(s'|s,a) = Z P(s',r'| s, a)
r'ER
UP » We can identify optimal way to behave if we know what good particular states
| T and/or actions are:

el

Optimal action-value function:
Qx(s,a) = maXIE[G 1S, =5,A, =a] = maX[E[RtH +vG,.1|S, = 5,4, =da]

—ZP(S rls a)[r+;/maXQ*(s a)lS =s5,A, =alforall s,a

s’ Ng

End

Sutton & Barto (2018, p. 48, Fig 3.1)

13

Markov Decision Processes
Formal definition

Finite MDPs: (5,A, T, R) Goal: maximize discounted returns
T
1. St eS for t = O, 1,2, 3, c e Gt _ Rt-|-1 +}/Rt2+ 72R;+3 + .+ }/T_t_lRT — Z yk—t—le
2. At e A(s) k=t+1
3. Rt+1 € R =R +7G64
4. T(s'|s,a) = Z P(s',r'| s, a)

r'eER

» Optimization problem: (computationally) find optimal policy = * (S,) = P(A,|S,)
» Optimal policy #*:x > ' & v* . (s) > v (s)forall s
» Can be estimated from experience!

* e.g., value iteration methods for episode tasks

Sutton & Barto (2018, p. 48, Fig 3.1)

Multi-Armed Bandits

Finding the best restaurant

Finite MDPs: (5,A, T, R)
1. S; € S where § = {s}

t Is iteration over repeated choice now

2. A(S) — {do,al,...}
3. R, €R

14

Goal: maximize reward over repeated action selection

Optimal action-value function:
Qk(s,a) = max E[G,| S, = s, A, = a]

l

O*(a) = max E[R,| A, = a]

» Optimization problem: (computationally) find optimal policy
*(S) = P(A,|S)

» Can be estimated from experience over repeated
decision-making!
- e.g., with action-value methods like the sample-average method

» central problem: exploration vs. exploitation

http://research.microsoft.com/en-us/projects/bandits/

15

RL Algorithms
Approximating Optimal Policy

[Deep Remforcement Learning]

l

Model-based

l l

Learn the Model Given the Model

l

MCTS (AlphaGo!/
AlphZero)

—»| World Model

—» [2A ,
—»| Expert Iteration

Model-free
Value-based Policy-based
y v » Deterministic Policy Gradient (DPS)
On-Policy Off-Policy
v y »| Proximal Policy Optimization (PPO)
Sarsa Q-Learning
l » TRPO/ACKTR
v
DQN Actor-Critic (AC)
C51 Dueling DQN Double DQN DDPG |¢—
|
v v v
TD3 SAC A2C/ASC

[3]

16

RL Algorithms
Approximating Optimal Policy

[Deep Remforcement Learning]

l

l

Model-based Model-free
l l l ;
Learn the Model Given the Model Value-based Policy-based
, y v » Deterministic Policy Gradient (DPS)
- World Model | MCTS (AlphaGo/ On-Policy Off-Policy
AlphZero)
v ! »| Proximal Policy Optimization (PPO)
> I2A , :
—»| Expert Iteration Sarsa Q-Learning
l » TRPO/ACKTR
4
DQN Actor-Critic (AC)
C51 Dueling DQN Double DQN DDPG |¢—
|
v ¥ v
TD3 SAC A2C/A3C

[3]

17

Policy-Gradient Methods

Introduction

» SO far: deriving optimal policy from estimated value function

- coming up with value functions might be difficult
- state-value function doesn’t prescribe actions
- action-value functions require argmax

» idea: optimize policy directly, such that expected reward is maximized
- think: optimize model with respect to objective function

» goal: find optimal €

, meax =, LG
» recall LM optimization: tweak @ so as to minimize loss
. Gradientdescent: 0,, =0 ,,—a VL,
Now: gradient ascent: 8, = +aVL ! | Ehads
’ -9 - Ynew — Yold v, S, R,

i“ Rr+l]
i S.. | Environment

action

source

https://youtu.be/AKbX1Zvo7r8?si=xXTWxjIngR-Gb5If

18

Policy-Gradient Methods

Policy-gradient theorem

» goal: find optimal &
. Now: gradient ascent: 0,,, =0 ,,+a VL,

» we write 7 for a sequence of states, actions, rewards and R(7) for (discounted) return

L(O) = Z P(z,0) R(t)

» sample-based policy gradient estimation

VL) =V) P(z,0) R@) =) V,P(z.0) R(v)

_ Z P@O G pee.o)R@)
P(z,o) 77

= 2 P(z,0) V;i(z)g) R(t) =) P(z,0)V,log P(z, O)R(7)

- Z V,log P(t', O)R(7")
=1

19

Policy-Gradient Methods

Language models as policies

| & | |
Policy gradient estimation: VL(6) =) P(z,0) Vlog P(t,0)R(z) ~ —) V,log P(z, O)R(z')
m

» policy P: language model

» trajectories 7: generations from language model

. log P(7', 6): log probability of a generation 7' under the language model
. R(7"): reward for generation 7

=1

Sutton & Barto (2018)

20

Summary

» the central framework for formalizing RL

problems are Markov Decision Processes
(MDPs)

» task of RL is to solve MDP such that the

expected return is maximized
- and to find the optimal policy

» classical solution methods for MDPs
include estimation of optimal state- and
action-value functions

» policy gradient methods directly optimize
the policy such that the expected return is
maximized
- can be applied to LMs!

21

Announcements

Solutions to exercises will be on Moodle on November 15th!

Next class (November 15th) online only!

