Reinforcement Learning for Language Model Training

Polina Tsvilodub

Reinforcement Learning

LMs: Recap Transformers, Training & Inference

- $LM : X \mapsto \Delta(S)$
- transformers use self-attention to offer and retrieve relevant information
 - stacked transformer blocks and multi-head attention increase capacity
- LMs are trained to predict the next word using cross-entropy loss (via teacherforcing)
- decoding schemes are used for inference given a trained LM
 - different stochastic sampling regimes
- SOTA models exhibit 'in-context learning'
- advanced prompting techniques might improve LLMs' generalization performance

Making LLMs useful Adaptation

- training a task-specific head on top of a model
 - e.g., span prediction layer on top of BERT with frozen BERT
 - on a dataset of ground truth input-output pairs for a particular task
- fine-tuning the model
 - further training part or entire model for a shorter time
 - on a dataset of ground truth input-output pairs for a particular task
- practical problem
 - training with standard supervision is impractical (data collection)
 - and inefficient (restricting "ground truth" to finite set of answers for open-ended tasks)
- direct demonstration of correct behaviour

RL is the solution: learn to achieve goal based on feedback from environment rather than

Reinforcement learning

Flavors of machine learning

- Unsupervised learning
 - e.g., clustering
- discover patterns in unlabeled data
 - 'given my inductive bias, what is the likely structure of the data?'
- Supervised learning also self-supervised learning aka behavioural cloning
- learn to output Y, given X, from labeled data
 - 'do as I show you'
- learning from demonstration

- Reinforcement learning
 - trial-and-error learning
- learning from interaction / experience
 - 'how do I optimally behave in order to maximize reward?'
 - or, 'how do i optimally achieve my goal?'
 - most natural way of learning?
 - tightly connected to the way organisms behave ("pleasure maximizers")

Christian (2020), Bishop (2009)

Reinforcement Learning: Overview Introduction

- Reinforcement Learning: Computational formalisation of goal-directed learning and decision making under uncertainty
- Goal: Maximize rewards (by learning optimal behavior)
- Basic building blocks:
 - Agent
 - States
 - Actions
 - Transition function P
 - Reward
 - Policy

Associative RL

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Reinforcement Learning: Overview Introduction

- Reinforcement Learning: Computational formalisation of goal-directed learning and decision making under uncertainty
- Goal: Maximize rewards (by learning optimal behavior)
- Basic building blocks:
 - Agent
 - States: $S_t \in S$ for t = 0, 1, 2, 3, ...
 - Actions: $A_t \in A(s)$
 - Transition function: $P(s' \mid s, a)$
 - Reward: $R_{t+1} \in R$
 - Policy: $\pi(S_t) = P(A_t | S_t)$

Associative RL

Sutton & Barto (2018, p. 48, Fig 3.1), image source

Finite MDPs:
$$(S, A, T, R)$$

1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$
2. $A_t \in A(s)$
3. $R_{t+1} \in R$
4. $T(s' | s, a) = \sum_{r' \in R} P(s', r' | s, a)$
5. Horizon H, discount factor $0 \le \gamma \le 1$

Expected rewards for state s and action a: r(a)

Markov property: S_{t-1} , A_{t-1} include all information about past agent-environment interactions that are relevant for S_t, R_t

$$(s, a) = \mathbb{E}(R_t | S_{t-1} = s, A_{t-1} = a) = \sum_{r \in R} r \sum_{s' \in S} P(s', r | s, a)$$

Finite MDPs:
$$(S, A, T, R)$$
 Goa

 1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$
 $G_t =$

 2. $A_t \in A(s)$
 Form

 3. $R_{t+1} \in R$
 epis

 4. $T(s' | s, a) = \sum_{r' \in R} P(s', r' | s, a)$
 $G_t =$

al: maximize returns until goal achieved $= R_{t+1} + R_{t_2} + \ldots + R_T$

mally: maximize expected discounted rewards over sode

Finite MDPs:
$$(S, A, T, R)$$

1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$
2. $A_t \in A(s)$
3. $R_{t+1} \in R$
4. $T(s'|s, a) = \sum_{r' \in R} P(s', r'|s, a)$
Goal: maximize discounted returns
 $G_t = R_{t+1} + \gamma R_{t_2} + \gamma^2 R_{t+3} + ... + \gamma^{T-t-1} R_T = \sum_{k=t+1}^T \gamma^{k-t-1} R_k$
 $= R_{t+1} + \gamma G_{t+1}$

- and/or actions are: Optimal state-value function: $V_{\pi}^*(s) = \max \mathbb{E}[G_t | S_t =$ $= \max_{a} \sum_{r}^{n} P(s', r \mid s, a)$

We can identify optimal way to behave if we know what good particular states

$$= s] = \max_{\pi} \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$
$$)[r + \gamma G_{t+1} | S_t = s] \text{ for all } s$$

• Optimization problem: (computationally) find optimal policy $\pi^*(S_t) = P(A_t | S_t)$

Finite MDPs:
$$(S, A, T, R)$$

1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$
2. $A_t \in A(s)$
3. $R_{t+1} \in R$
4. $T(s' | s, a) = \sum_{r' \in R} P(s', r' | s, a)$
deterministic optimal policy deterministic optimal policy

$$V^{*}(4,3)$$

 $V^{*}(3,3)$
 $V^{*}(2,3)$
 $V^{*}(1,1)$
 $V^{*}(4,2)$

 $\gamma = 1$ $\gamma = 0.9$

 $V^{*}(4,3) = 1$ = 1 $V^{*}(3,3) = 0.9$ = 1 $V^{*}(2,3) = 0.81$ = 1 $V^{*}(1,1) = 0.9^5 = 0.59$ = 1 = -1 $V^{*}(4,2) = -1$

Finite MDPs:
$$(S, A, T, R)$$

1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$
2. $A_t \in A(s)$
3. $R_{t+1} \in R$
4. $T(s' \mid s, a) = \sum_{r' \in R} P(s', r' \mid s, a)$
Goal: maximize discounted returns
 $G_t = R_{t+1} + \gamma R_{t_2} + \gamma^2 R_{t+3} + ... + \gamma^{T-t-1} R_T = \sum_{k=t+1}^T \gamma^{k-t-1} R_k$
 $= R_{t+1} + \gamma G_{t+1}$

and/or actions are:

Optimal action-value function: $Q_{\pi}^{*}(s,a) = \max_{\pi} \mathbb{E}[G_{t} | S_{t} = s, A_{t} = a] = \max_{\pi} \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_{t} = s, A_{t} = a]$ $= \sum_{r} P(s',r | s,a)[r + \gamma \max_{a'} Q^{*}(s',a') | S_{t} = s, A_{t} = a] \text{ for all } s, a$ S', r

We can identify optimal way to behave if we know what good particular states

Finite MDPs:
$$(S, A, T, R)$$
Goal: maximize discounted returns1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$ $G_t = R_{t+1} + \gamma R_{t_2} + \gamma^2 R_{t+3} + ... + \gamma^{T-t-1} R_T = \sum_{k=t+1}^T \gamma^{k-t-1} R_k$ 2. $A_t \in A(s)$ $= R_{t+1} + \gamma G_{t+1}$

CALC MDPs:
$$(S, A, T, R)$$

1. $S_t \in S$ for $t = 0, 1, 2, 3, ...$
2. $A_t \in A(s)$
3. $R_{t+1} \in R$
Goal: maximize discounted returns
 $G_t = R_{t+1} + \gamma R_{t_2} + \gamma^2 R_{t+3} + ... + \gamma^{T-t-1} R_T = \sum_{k=t+1}^T \gamma^{k-t-1} R_k$
 $= R_{t+1} + \gamma G_{t+1}$

3.
$$R_{t+1} \in R$$

4. $T(q' \mid q, q) - \sum D(q', q' \mid q, q)$

4.
$$T(s' | s, a) = \sum_{r' \in R} P(s', r' | s, a)$$

- Can be estimated from experience!

• Optimization problem: (computationally) find optimal policy $\pi^*(S_t) = P(A_t | S_t)$ • Optimal policy $\pi^* : \pi \ge \pi' \Leftrightarrow v^*_{\pi^*}(s) \ge v_{\pi'}(s)$ for all *s*

• e.g., value iteration methods for episode tasks

Multi-Armed Bandits Finding the best restaurant

Finite MDPs: (S, A, T, R)1. $S_t \in S$ where $S = \{s\}$ Q_{π}^{*} *t* is iteration over repeated choice now 2. $A(s) = \{a_0, a_1, \dots\}$ Q_{π}^{*} 3. $R_t \in R$ 4. $T(s'|s,a) = \sum P(s',r'|s,a)$ $r' \in R$ $A_t = a_i$

Goal: maximize reward over repeated action selection Optimal action-value function:

Optimization problem: (computationally) find optimal policy $\pi^*(S_t) = P(A_t \mid S_t)$

Can be estimated from experience over repeated decision-making!

• e.g., with action-value methods like the sample-average method central problem: exploration vs. exploitation

RL Algorithms Approximating Optimal Policy

RL Algorithms Approximating Optimal Policy

Policy-Gradient Methods Introduction

- so far: deriving optimal policy from estimated value function
 - coming up with value functions might be difficult
 - state-value function doesn't prescribe actions
 - action-value functions require argmax
- idea: optimize policy directly, such that expected reward is maximized
 - think: optimize model with respect to objective function
- goal: find optimal θ
 - $\max_{\theta} \mathbb{E}_{\pi_{\theta}}[G_t]$
- \blacktriangleright recall LM optimization: tweak θ so as to minimize loss
 - Gradient descent: $\theta_{new} = \theta_{old} \alpha \nabla L_{\theta}$
 - Now: gradient ascent: $\theta_{new} = \theta_{old} + \alpha \nabla L_{\theta}$

Policy-Gradient Methods Policy-gradient theorem

- goal: find optimal θ
 - Now: gradient ascent: $\theta_{new} = \theta_{old} + \alpha \nabla L_{\theta}$
- we write τ for a sequence of states, actions, rewards and $R(\tau)$ for (discounted) return $L(\theta) = \sum P(\tau, \theta) R(\tau)$
- sample-based policy gradient estimation $\nabla L(\theta) = \nabla \sum P(\tau, \theta) R(\tau) = \sum \nabla_{\theta} P(\tau, \theta) R(\tau)$ $= \sum_{\sigma} \frac{P(\tau, \theta)}{P(\tau, \theta)} \nabla_{\theta} P(\tau, \theta) R(\tau)$ $= \sum P(\tau,\theta) \frac{\nabla_{\theta} P(\tau,\theta)}{P(\tau,\theta)} R(\tau) = \sum P(\tau,\theta) \nabla_{\theta} \log P(\tau,\theta) R(\tau)$ \mathcal{T} $\approx \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{i}, \theta) R(\tau^{i})$

 $V\log(f(x)) = Vf(x)/f(x)$

Policy-Gradient Methods Language models as policies

Policy gradient estimation: $\nabla L(\theta) = \sum P(\tau, \theta) \nabla_{\theta}$

- policy P: language model
- trajectories τ : generations from language model
- ▶ $\log P(\tau^i, \theta)$: log probability of a generation τ^i under the language model
- $R(\tau^i)$: reward for generation τ^i

$$\log P(\tau, \theta) R(\tau) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{i}, \theta) R(\tau^{i})$$

Sutton & Barto (2018)

Summary Reinforcement learning

- the central framework for formalizing RL problems are Markov Decision Processes (MDPs)
- task of RL is to solve MDP such that the expected return is maximized
 - and to find the optimal policy
- classical solution methods for MDPs include estimation of optimal state- and action-value functions
- policy gradient methods directly optimize the policy such that the expected return is maximized
 - can be applied to LMs!

Announcements

Solutions to exercises will be on Moodle on November 15th!

Next class (November 15th) online only!