Reinforcement Learning for Language Model Training

Polina Tsvilodub

Prepped LLMs

RLHF & PPO

- Policy gradient methods can be used for training LMs
 - in a bandit environment
- Reward required for RL training is based on human feedback
 - can be elicited in different ways
 - used for training a reward model
- LLMs are trained with RLHF:
 - step 1: supervised fine-tuning
 - step 2: reward model learning
 - step 3: training with PPO
- PPO is an advanced policy gradient algorithm
 - uses advantage estimation and compound rewards for better training
 - often implemented as A2C
- resulting LLMs maximize reward (not next token probability!)

Policy-Gradient Methods Language models as policies

Policy gradient estimation: $\nabla L(\theta) = \sum P(\tau, \theta) \nabla_{\theta}$

- ▶ policy π_{θ} : language model
- trajectories τ : generations from language model
- ▶ $\log \pi_{\theta}(a^i \mid s^i)$: log probability of a generation a^i u
- $R(a_t^i)$: reward for generation a^i

$$\int_{0} \log P(\tau, \theta) R(\tau) \approx \frac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{H} \nabla_{\theta} \log \pi_{\theta} (a_{t}^{i} | s_{t}^{i}) R(a_{t}^{i})$$

$$s^{i}: \text{ prompt}$$

$$a^{i}: \text{ completion}$$

$$\downarrow$$

k-armed bandit environment where k = # of prompts

::: no episodic structure!

Sutton & Barto (2018)

Reinforcement Learning from Human Feedback Overview

- use human judgments as a signal on what model prediction counts as a good output
- learn a reward model representing human feedback

Sutton & Barto (2018), Ouyang et al (2022)

Human feedback in RL RLHF

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

 \bigcirc Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from Write a story the dataset. about otters. PPO The PPO model is initialized from the supervised policy. The policy generates Once upon a time... an output. RM The reward model calculates a reward for the output. The reward is used to update the r_k policy using PPO.

RLHF in practice Step 1

Step 1

Collect demonstration data and train a supervised policy.

- supervised fine-tuning on a dataset of inputoutput demonstrations of the target task pretrained model trained for a shorter time
- shifts the initial pretraining distribution $\Delta(S)$ to a task-specific distribution $\Delta'(S)$ (behavioural cloning)
 - learning about the format of task
 - producing informative rollouts from the policy for reward modelling

RLHF in practice Step 2

Collect comparison data and train a reward model.

- model's output
- supervised training of a reward model encoding human preferences:
 - Fine-tuned LM (e.g., 6B GPT-3 in InstructGPT) trained to output scalar reward:

 $L(\theta) = -$

smart procedure for eliciting comparisons

creation of a dataset encoding human preferences for

$$\frac{1}{N} \mathbb{E}_{(x,D,B)\sim D}[log \left(\sigma(r_{\theta}(x,D) - r_{\theta}(x,B))\right)]$$

predicted reward predicted reward for response D for response B

OpenAI (2022), Ouyang et al. (2022)

Policy-Gradient Methods Improvements

$$\nabla L(\theta_t) \propto \frac{1}{m} \sum_{i=1}^m \nabla_{\theta} \log \pi_{\theta}(a^i \mid s^i) R(a^i) =$$
Introducing an advantage: $\hat{A} = R(a^i) - b$

 $L_{\theta} = \mathbb{E}[\hat{A} \log \pi_{\theta}(a^{i} | s^{i})]$

Baseline b: e.g., constant, average, or learned state value Introducing a surrogate objective / loss: ratio $r(\theta) = \frac{\pi_{\theta}(a^i \mid s^i)}{\pi_{\theta_old}(a^i \mid s^i)}$ $\mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a^i \mid s^i) R(a^i)] \to \mathbb{E}[\frac{\nabla_{\theta} \pi_{\theta}(a^i \mid s^i)}{\pi_{\theta_{old}}(a^i \mid s^i)} R(a^i)]$

$$\mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a^{i} \mid s^{i})R(a^{i})] \to \mathbb{E}[\frac{\nabla_{\theta}\pi_{\theta}}{\pi_{\theta_{old}}}$$

"New policy shouldn't be too different from old policy"

noisy estimate of $\nabla L(\theta)$ $\mathbb{E}[\nabla_{\theta} \log \pi_{\theta}(a^{i} \mid s^{i}) R(a^{i})]$

Schulman et al. (2015), Schulman et al. (2017)

RLHF in practice Step 3 details

where $\hat{q}(x, y)$ initialised from $R_{\theta}(x, y)$

Ouyang et al. (2022), Stiennon et al. (2022)

Core LLM

- trained on language modeling objective
 - predict the next word

"Here is a fragment of text ... According to your **knowledge of the statistics of human language**, what words are likely to come next?

Shanahan (2022)

Prepped LLM

- trained on usefulness objective
 - produce text that satisfies user goals

"Here is a fragment of text ... According to your **reward-based conditioning**, what words are likely to trigger positive feedback?"

Human feedback Limitations

- there are different ways to elicit human judgements for a preference RM
 - comparisons
 - absolute ratings
 - feedback
 - •
- you get what you ask for: necessity of detailed & complicated instructions
- annotations might be biased
 - selecting annotator sample is difficult
 - individual annotators can add malicious data
- easy to overlook mistakes
- difficult to evaluate complex tasks

. . .

Casper et al. (2023)

Taking stock

		coming up with own projects	
	learning "what?"	learning "how?"	
START	mastering basic concepts		

Schedule preliminary

session	date				
1	October 18th				
2	October 25th				
	November 1st				
3	November 8th				
4	November 15th				
5	November 22nd				
6	November 29th				
7	December 6th				
8	December 13th				
9	December 20th				
10	January 10th				
11	January 17th				
12	January 24th				
13	January 31st				

topic

intro & recap of LLMs LLMs & intro to RL holiday RL: part 2 RL: part 3 LLMs & RL studies Behavioral effects of RL Representational effects of RL More advanced evaluations of LMs Experiments in RL environments Social implications Limitations of RL for LM training Zooming out final session

SOTA models trained with RL

GPT-3 OpenAl

300B tokens

- CC, WebText2, Books1-2, Wikipedia
- 0.1B 175B parameters Q
- decoder-only transformer with a BPE tokenizer
 - context window of 2048 tokens

Model Name	n_{params}	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m hcad}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2 M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2 M	$1.0 imes10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

pretraining on LM for 0.5-3 epochs + fine-tuning with RLHF = GPT-3.5

Brown et al. (2020)

ARC . Write a story about otters PPO $\langle \rangle$ Once upon a time.. $\langle \rangle$

InstructGPT OpenAl

- quite low LR
- low KL coefficients

continuous iteration

Step 2 Collect comparison data and train a reward model.

*π*_θ: 175B GPT-3

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

PPO optimization:

 $L^{CLIP}(\theta) = \mathbb{E}[min(r(\theta)\hat{A}, clip(r(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A})]$

 $\pi_{RL}(y)$ $obj(\phi) - \hat{q}(x, y)$ $\pi_{RL_old}(y \mid x)$

where $\hat{q}(x, y)$ initialised from $R_{\theta}(x, y)$

Presentations Your job

During the presentations, think about the following questions:

- Skeywords for your favourite aspects of the paper
- Skeywords for your least favourite aspects of the paper
- would you be able to re-apply (conceptually)? We will collect with a Mentimeter on both talks after!

Citation (2002), Citation 2 (2050)

Mentimeter

Code: 3927 2787

